Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

BBA (2012 & Onwards Batches)
BRDM (2014 & Onwards)
Bachelor In Service Industry Management (SIM) (2014 & Onwards)
(Sem.-2)

BUSINESS MATHEMATICS

Subject Code: BBA-203 Paper ID: [C0242]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B consists of FOUR Sub-sections: Units-I, II, III & IV.
- 3. Each Sub-section contains TWO questions each, carrying TEN marks each.
- 4. Student has to attempt any ONE question from each Sub-section.

SECTION-A

1. Write briefly:

- a) Write the set $A = \{1, 4, 9, 16, 25, ...\}$ in a set builder form.
- b) What is changing formula of logarithms?

c) Evaluate
$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} + \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
.

- d) Find the minor and co-factor of each element of $\Delta = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
- e) Differentiate the following function w.r.t. $x(x^2 4x + 5)(x^2 2)$.
- f) Differentiate x^x w.r.t. x.
- g) Which number is larger $(1.01)^{1000000}$ or 10000?
- h) Show that $9^{n+1} 8n 9$ is divisible by 64 whenever *n* is a positive integers.
- i) In a student union meeting in a school, 16 students show up. Each shakes hands with each other exactly once. Determine the total number of handshakes.
- j) Define Skew symmetric.

SECTION-B

UNIT-I

- 2. There are 40 students in a chemistry class and 60 students in a Physics class. Find the number of students which are either in physics class or chemistry class in the following cases:
 - i) the two classes meet at the same hour
 - ii) the two classes meet at different hours and 20 students are enrolled in both the subjects.
- 3. Solve the following for x
 - (i) $\log_{10} \left[(\log_3 3 (\log_4 64)) \right]$
 - (ii) $\log_5(\log_6 36) = \log_x 4$

UNIT-II

- 4. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying $A \cdot A' = 9 I_3$, then find the values of a and b.
- 5. If $A = \begin{vmatrix} 3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3 \end{vmatrix}$, find A^{-1} and hence solve the system of linear equations

$$3x + 4y + 7z = 14$$

$$2x - y + 3z = 4$$

$$x + 2v - 3z = 0$$
.

UNIT-III

- 6. Find $\frac{dy}{dx}$, if $y^x + x^y + x^x = a^b$.
- 7. $Y = \frac{(ax-b)}{(x-1)(x-4)}$ has a turning point at p(2, -1). Find the values of a and b and show that y is maximum at p.

UNIT-IV

- 8. Find $(a+b)^4 (a-b)^4$, hence, evaluate $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$.
- 9. If 3^{rd} , 4^{th} , 5^{th} terms in the expansion of $(x + a)^n$ are respectively 84, 280, and 560. Find the values of x, a, n.